在学习了之前的几篇 raft-rs, raftstore 相关文章之后(如 Raft Propose 的 Commit 和 Apply 情景分析,Raftstore 概览等),raft-rs 以及 raftstore 的流程大家应该基本了解了。其中 raft-rs 解决的是单个 Raft group
(即单个 Region) 的问题,raftstore 解决的是多个 Raft group
(即多个 Region)的问题。Split 和 Merge 则是 raftstore 多个 Raft group
所独有的操作。 TiKV 中的 Split 能把一个 Region 分裂成多个 Region,Merge 则能把 Range 相邻的 2 个 Region 合成一个 Region。本文接下来要介绍的是 Split 的源码。
message RegionEpoch {
// Conf change version, auto increment when add or remove peer
uint64 conf_ver = 1;
// Region version, auto increment when split or merge
uint64 version = 2;
}
我们先从 region epoch
讲起,上面是它的 protobuf 定义,在之前的源码分享文章中提到过,它的本质就是两个版本号,更新规则如下:
配置变更的时候, conf_ver
+ 1。
Split 的时候,原 region 与新 region 的 version
均等于原 region 的 version
+ 新 region 个数。
Merge 的时候,两个 region 的 version
均等于这两个 region 的 version
最大值 + 1。
2 和 3 两个规则可以推出一个有趣的结论:如果两个 Region 拥有的范围有重叠,只需比较两者的 version
即可确认两者之间的历史先后顺序,version
大的意味着更新,不存在相等的情况。
证明比较简单,由于范围只在 Split 和 Merge 的时候才会改变,而每一次的 Split 和 Merge 都会更新影响到的范围里 Region 的 version
,并且更新到比原范围中的 version
更大,对于一段范围来说,不管它属于哪个 Region,它所在 Region 的 version
一定是严格单调递增的。
PD 使用了这个规则去判断范围重叠的不同 Region 的新旧。
每条 Proposal 都会在提出的时候带上 PeerFsm 的 Region epoch,在应用的时候检查该 Region epoch 的合法性,如果不合法就跳过。
上图所示,新 Proposal 的 Region epoch 是应用了 Applied Index
那条 Proposal 之后得到的,如果在 Applied Index
+ 1 到 Last Index
之间的 Proposal 有修改 Region Epoch 的操作,新 Proposal 就有可能会在应用的时候被跳过。
列举两个被跳过的情况,其他的可参照代码 store::util::check_region_epoch
:
非 Admin Request, Proposal 中的 version
与当前的不相等。
Split,Merge 的 Request,Proposal 中的 Region epoch 与当前的不相等。
Split 触发的条件大体分两种:
PD 触发
TiKV 每个 Region 自行定时检查触发
PD 触发主要是指定哪些 key 去 Split,Split Region 使用文档 中的功能就是利用 PD 触发实现的。
每个 Region 每隔 split-region-check-tick-interval
(默认 10s)就会触发一次 Split 检查,代码见 PeerFsmDelegate::on_split_region_check_tick
,以下几个情况不触发检查
有检查任务正在进行;
数据增量小于阈值;
当前正在生成 snapshot 中并且触发次数小于定值。如果频繁 Split,会导致生成的 snapshot 可能因为 version
与当前不一致被丢弃,但是也不能一直不 Split,故设置了触发上限。
触发检查后,会发送任务至 split_checker_worker
,任务运行时调用 split_checker.rs
中函数 Runner::check_split
。
调用 coprocessor::new_split_checker_host
获取 SplitCheckerHost
,获取时会对每一个注册过的 split_check_observers
调用 add_checker
,若满足触发阈值则会把它的 split_check
加入 SplitCheckerHost::checkers
中,如果 checkers
为空则结束检查。(值得一提的是,这里的 coprocessor
并不是指的是计算下推的那个 coprocessor
,而是观测 raftstore 事件,给外部提供事件触发的 coprocessor
,它的存在可以很好的减少外部观测事件对 raftstore 代码的侵入)
获取 policy
,这里的 policy
只有两种,分别是 SCAN
和 APPROXIMATE
,即扫描和取近似,遍历 split_checker
调用它们的 policy
,只要有一个给出的 policy
是取近似,那么最终的结果就是取近似,反之则是扫描。
获取 Split key。
a. 若 policy
为扫描,调用 scan_split_keys
,扫描读出该 Region 范围大 Column Family 的所有数据,对于每一对 KV,调用每个 split_checker
的 on_kv
计算 Split key,扫描完成后遍历 split_checker
的 split_keys
返回第一个不为空的结果。由于需要扫描存储的数据,这个策略会引入额外的 I/O。
b. 若为取近似,调用 approximate_split_keys
,遍历 split_checker
的 approximate_split_keys
,返回第一个不为空的结果。这是通过 RocksDB 的 property 来实现的,几乎没有额外的 I/O 被引入,因而性能上是更优的策略。
发送 CasualMessage::SplitRegion
给这个 Region。
SplitCheckerHost
只是聚合了split_check
的结果,具体实现还是在这些 split_check
中,它们均实现了 SplitChecker
trait,由上文的流程叙述也都提到了这些函数。
pub trait SplitChecker<E> {
/// Hook to call for every kv scanned during split.
///
/// Return true to abort scan early.
fn on_kv(&mut self, _: &mut ObserverContext<'_>, _: &KeyEntry) -> bool {
false
}
/// Get the desired split keys.
fn split_keys(&mut self) -> Vec<Vec<u8>>;
/// Get approximate split keys without scan.
fn approximate_split_keys(&mut self, _: &Region, _: &E) -> Result<Vec<Vec<u8>>> {
Ok(vec![])
}
/// Get split policy.
fn policy(&self) -> CheckPolicy;
}
split_check
有以下几种:
检查 Region 的总或者近似 Size,代码位于 size.rs
。
检查 Region 的总或者近似 Key 数量是否超过阈值,代码位于 key.rs
。
根据 Key 范围二分 Split,代码位于 half.rs
,除了上文讲的 PD 指定 key 来 Split,这种方式也是由 PD 触发的,目前只有通过 pd-ctl
和 tikv-ctl
的命令来手动触发。
根据 Key 所属 Table 前缀 Split,代码位于 table.rs
,配置默认关闭。
由于篇幅所限,具体的实现细节可参阅代码。
Split 的实现相对简单,总的来说,Split 这个操作被当做一条 Proposal 通过 Raft 达成共识,然后各自的 Peer 分别执行 Split。
讲一下具体的流程。
在触发 Split 之后,触发方会发送一条 CasualMessage::SplitRegion
给这个 Region,处理代码见 PeerFsmDelegate::on_prepare_split_region
,除了需要检查是否是 leader,还需检查 version
是否有变化,如有变化就拒绝触发 Split。
检查成功后,发送一条 RPC 向 PD 请求分配一些新的 ID,包含所有新 Region 的 ID 以及它所有的 Peer ID,等到 PD 回复后,构造一个类型为 AdminCmdType::BatchSplit
的 Proposal 提给该 Peer。代码在 pd_worker 下的 handle_ask_batch_split
。
之后的流程就如 Raft Propose 的 Commit 和 Apply 情景分析 所描述的那样,如上文所述,在应用前会判断 Region epoch 的合法性,如果不合法就需要跳过。假设它没有被跳过,接下来看这条 Proposal 应用的地方 ApplyDelegate::exec_batch_split
。
更新原 Region 的 version
,新 Region 的 epoch 继承原 Region 的 epoch。
right_derive
为 true 的,原 Region 要分裂到右侧,为 false 则反之,依次设置每个 Region 的 start key 与 end key。
对每个 Split 出来的新 Region 调用 write_peer_state
与 write_initial_apply_state
创建元数据。
在应用完成之后,ApplyFsm 会发送 PeerMsg::ApplyRes
给 PeerFsm, PeerFsm 处理的代码在 PeerFsmDelegate::on_ready_split_region
如果是 leader,上报 PD 自己以及新 Region 的 meta 信息(包含范围,Region epoch 等等一系列信息)。
依次创建新 Region 的 PeerFsm 和 ApplyFsm,做一些注册的工作。
更新 PeerFsm 的 Region epoch。
需要注意的是,如果在应用完成落盘后宕机,这部分的工作能在重启后恢复。其实所有日志应用的设计都需要满足这个原则。
到这里 Split 的工作就完成了,等到原 Region 大多数的 Peer 都完成了 Split 的工作后,新 Region 就可以成功选出 leader 并且提供服务了。
在各机器时钟偏移不超过一定范围的前提下,某个 Region 的 Leader 持有 Raft 租约能保证这段时间不会产生其他 term 更大的 Leader,基于这个保证,使用租约可以提供线性一致性的本地读取功能,具体实现可以参考上一篇源码阅读文章。
但是在 Split 过程中,原 Region 持有的租约并不能保证这一点。
假设 3 个副本,考虑如下情况:Split Proposal 在 2 个 Follower 上已经应用完成,同时 Leader 上还没有应用(由于 apply 是异步的,Follower 上的应用进度可能超过 Leader)。
Split 之后原 Region 的范围缩小,其余的范围属于新 Region,而新 Region 存活的 Peer 个数已经超过了 Raft 所要求的大多数副本,故可以合理的发起选举并产生 Leader,并且正常服务读写请求。此时原 Region Leader 仍然还未应用 Split Proposal,如果因为持有租约继续服务原范围的读请求,就会破坏线性一致性。
TiKV 处理方式是在 Split 期间不续约租约。方法是记录最后一条 Split Proposal 的 index last_committed_split_idx
, 记录位置见 Peer::handle_raft_ready_append
。只需判断 last_committed_split_idx
是否大于 applied_index
即可得知是否在 Split 期间(Peer::is_splitting
)。
阅读过 Peer::handle_raft_ready_append
中记录 last_committed_split_idx
的小伙伴应该能注意这里并没有让租约立马失效,仅仅设置 index 阻止下次续约。换句话说,在 Split 期间的那次租约时间内是可以让原 Region 的 Leader 提供本地读取功能的。根据前面的分析,这样做貌似是不合理的。
原因十分有趣,对于原 Region 非 Leader 的 Peer 来说,它创建新 Region 的 Peer 是不能立马发起选举的,得等待一个 Raft 的选举超时时间,而对于原 Region 是 Leader 的 Peer 来说,新 Region 的 Peer 可以立马发起选举。Raft 的超时选举时间是要比租约时间长的,这是保证租约正确性的前提。所以在 Split 期间的那次租约时间内,在其他 TiKV 上的新 Region Peer 就算创建出来了,也不会发起选举,因此保证了不会有新数据写入,故在原 Region 上读取不会破坏线性一致性。
Region Split 的基础流程比较简单,简单来说就是依赖原 Region 的 Raft 提供的可靠复制功能实现的,而与此相对的 Region Merge 由于两个 Region 属于不同的 Raft group,与 Region Split,Raft Snapshot 的相互作用,再加上网络隔离带来的影响,无疑有更大的复杂度。在之后的源码阅读文章中我们会继续讲解 Region Merge,敬请期待!