Integrate TiDB Vector Search with Jina AI Embeddings API
This tutorial demonstrates how to use Jina AI to generate embeddings for text and image data, store them in TiDB vector storage, and perform semantic search.
Info
Currently, only the following product and regions support native SQL functions for integrating the Jina AI Embeddings API:
- TiDB Cloud Starter on AWS:
Frankfurt (eu-central-1)
andSingapore (ap-southeast-1)
Jina AI Embeddings
Jina AI provides high-performance, multimodal, and multilingual long-context embeddings for search, RAG, and agent applications.
Supported Models
Model Name | Dimensions | Max Input Tokens | Description |
---|---|---|---|
jina_ai/jina-embeddings-v4 |
2048 | 32,768 | Multimodal, multilingual, text and image embeddings |
jina_ai/jina-clip-v2 |
1024 | 8192 | Multilingual multimodal embeddings for texts and images |
jina_ai/jina-embeddings-v3 |
1024 | 8192 | Multilingual, text and code embeddings |
For a complete list of supported models and detailed specifications, see the Jina AI Embeddings Documentation.
Usage example
This example demonstrates creating a vector table, inserting documents, and performing similarity search using Jina AI embedding models.
Step 1: Connect to the database
Step 2: Configure the API key
Create your API key from the Jina AI Platform and bring your own key (BYOK) to use the embedding service.
Configure the API key for the Jina AI embedding provider using the TiDB Client:
Step 3: Create a vector table
Create a table with a vector field that uses the jina_ai/jina-embeddings-v4
model to generate 2048-dimensional vectors:
from pytidb.schema import TableModel, Field
from pytidb.embeddings import EmbeddingFunction
from pytidb.datatype import TEXT
class Document(TableModel):
__tablename__ = "sample_documents"
id: int = Field(primary_key=True)
content: str = Field(sa_type=TEXT)
embedding: list[float] = EmbeddingFunction(
model_name="jina_ai/jina-embeddings-v4"
).VectorField(source_field="content")
table = tidb_client.create_table(schema=Document, if_exists="overwrite")
Step 4: Insert data into the table
Use the table.insert()
or table.bulk_insert()
API to add data:
documents = [
Document(id=1, content="Java: Object-oriented language for cross-platform development."),
Document(id=2, content="Java coffee: Bold Indonesian beans with low acidity."),
Document(id=3, content="Java island: Densely populated, home to Jakarta."),
Document(id=4, content="Java's syntax is used in Android apps."),
Document(id=5, content="Dark roast Java beans enhance espresso blends."),
]
table.bulk_insert(documents)
Insert data using the INSERT INTO
statement:
INSERT INTO sample_documents (id, content)
VALUES
(1, "Java: Object-oriented language for cross-platform development."),
(2, "Java coffee: Bold Indonesian beans with low acidity."),
(3, "Java island: Densely populated, home to Jakarta."),
(4, "Java's syntax is used in Android apps."),
(5, "Dark roast Java beans enhance espresso blends.");
Step 5: Search for similar documents
Use the table.search()
API to perform vector search: